
Deep learning

Timon Deschamps
timon.deschamps@univ-lyon1.fr

September 2025

1 / 46

mailto:timon.deschamps@univ-lyon1.fr

What you’ll learn

• Deep learning principles

• Perceptron, multilayer perceptron

• Convolutional neural networks

• Deep learning in practice

• Limitations of deep learning

2 / 46

What is learning? What is our goal?

Formally, we want to learn a function f (·) that maps inputs to desired outputs.

Goals

• memorization

• generalization

• explainability, fairness,

robustness, efficiency...

3 / 46

What is learning? What is our goal?

Formally, we want to learn a function f (·) that maps inputs to desired outputs.

Goals

• memorization

• generalization

• explainability, fairness,

robustness, efficiency...

3 / 46

What is learning? What is our goal?

Formally, we want to learn a function f (·) that maps inputs to desired outputs.

Goals

• memorization

• generalization

• explainability, fairness,

robustness, efficiency...

3 / 46

What is learning? What is our goal?

Formally, we want to learn a function f (·) that maps inputs to desired outputs.

Goals

• memorization

• generalization

• explainability, fairness,

robustness, efficiency...

3 / 46

Types of learning

• supervised: y = f (x), with x ∈ X and y ∈ Y
– regression: Y is continuous, e.g., Rn

– classification: Y is discrete, e.g., Y = {dog, cat}
• unsupervised: f (x), with x ∈ X

– clustering

– dimensionality reduction

• reinforcement…

4 /46

Types of learning

• supervised: y = f (x), with x ∈ X and y ∈ Y
– regression: Y is continuous, e.g., Rn

– classification: Y is discrete, e.g., Y = {dog, cat}
• unsupervised: f (x), with x ∈ X

– clustering

– dimensionality reduction

• reinforcement…

4 /46

Types of learning

• supervised: y = f (x), with x ∈ X and y ∈ Y
– regression: Y is continuous, e.g., Rn

– classification: Y is discrete, e.g., Y = {dog, cat}
• unsupervised: f (x), with x ∈ X

– clustering

– dimensionality reduction

• reinforcement…

4 /46

The artificial neuron [McCulloch and Pitts, 1943]

• inputs/features xi

• weights wi

• sum of the products ∑
• activation function φ

• output!

ŷ = φ(∑n
i=1xiwi)

5 / 46

The artificial neuron [McCulloch and Pitts, 1943]

• inputs/features xi

• weights wi

• sum of the products ∑
• activation function φ

• output!

ŷ = φ(∑n
i=1xiwi)

5 / 46

The artificial neuron [McCulloch and Pitts, 1943]

• inputs/features xi

• weights wi

• sum of the products ∑
• activation function φ

• output!

ŷ = φ(∑n
i=1xiwi)

5 / 46

The artificial neuron [McCulloch and Pitts, 1943]

• inputs/features xi

• weights wi

• sum of the products ∑
• activation function φ

• output!

ŷ = φ(∑n
i=1xiwi)

5 / 46

The artificial neuron [McCulloch and Pitts, 1943]

• inputs/features xi

• weights wi

• sum of the products ∑
• activation function φ

• output!

ŷ = φ(∑n
i=1xiwi)

5 / 46

The artificial neuron [McCulloch and Pitts, 1943]

6 / 46

The perceptron algorithm [Rosenblatt, 1957]

Using x0 = 1 and w0 = −θ:

ŷ = Hθ(
n

∑
i=1

xiwi)

= H0(
n

∑
i=0

xiwi)

= H0(x>w)

with x =

x0
...

xn

 and w =

w0
...

wn


7 / 46

The perceptron: learning

Instead of using hand-set values for weights, Rosenblatt proposes to learn them.

Learning rule: ∆wi = ηxi(y− ŷ)

→ Intuitively, if the prediction is larger than the target, we need to reduce the

weights, and vice versa.

Let’s learn the OR function by iterating on four learning examples:

x1 =

10
0

→ 0, x2 =

11
0

→ 1, x3 =

10
1

→ 1, x4 =

11
1

→ 1

8 /46

https://www.desmos.com/calculator/wtt3omtsay

The perceptron: properties

Properties

1. linear classifier, i.e., separates space with an hyperplan

2. weight vector is orthogonal to the hyperplan, bias controls the y-intercept

3. converges for infinitesimally small η if the training data is linearly separable

9 / 46

From perceptron to SGD

Problems with the perceptron:

• can only perform binary classification

• does not converge when data is not linearly separable (or noisy)

• updates in an abrupt manner and does not use well classified samples

Stochastic gradient descent (SGD):

Goal: update weights to minimize the cost function J

∆w = −η∇J (w)

• updates in a smoother way than perceptron (uses all samples)

• converges even for non linearly separable data (for appropriately chosen η)

• needs a differentiable cost function!

10 / 46

From perceptron to SGD

Problems with the perceptron:

• can only perform binary classification

• does not converge when data is not linearly separable (or noisy)

• updates in an abrupt manner and does not use well classified samples

Stochastic gradient descent (SGD):

Goal: update weights to minimize the cost function J

∆w = −η∇J (w)

• updates in a smoother way than perceptron (uses all samples)

• converges even for non linearly separable data (for appropriately chosen η)

• needs a differentiable cost function!

10 / 46

Gradient descents

Algorithm 1: Gradient descent

Data: Training dataset of N examples

Result: Optimized weights w
Initialize weights randomly;

while not converged do

Compute true gradient, ∇J(w) = 1
N ∑N

1 L(xi) // Expensive but convergence is
theoretically guaranteed

Update weights, w← w− η∇J(w);

end

return w;

• Batch GD: J is the average of a loss L over the entire dataset

• Online GD: J is the loss on a single training example

• Mini-batch GD: J is the average loss over a subset of the training dataset

Gradient descent algorithms are stochastic when the training examples are

selected randomly.
11 / 46

Gradient descents

Algorithm 2: Online gradient descent

Data: Training dataset of N examples

Result: Optimized weights w
Initialize weights randomly;

while not converged do

Compute estimate gradient, ∇J(w) ' L(xi) // Faster, but noisier: one example

is not representative of the training data

Update weights, w← w− η∇J(w);

end

return w;

• Batch GD: J is the average of a loss L over the entire dataset

• Online GD: J is the loss on a single training example

• Mini-batch GD: J is the average loss over a subset of the training dataset

Gradient descent algorithms are stochastic when the training examples are

selected randomly.
11 / 46

Gradient descents

Algorithm 3: Mini-batch gradient descent

Data: Training dataset of N examples

Result: Optimized weights w
Initialize weights randomly;

while not converged do

Compute estimate gradient, ∇J(w) ' 1
n ∑n<N

1 L(xi) // Often best balance in

practice

Update weights, w← w− η∇J(w);

end

return w;

• Batch GD: J is the average of a loss L over the entire dataset

• Online GD: J is the loss on a single training example

• Mini-batch GD: J is the average loss over a subset of the training dataset

Gradient descent algorithms are stochastic when the training examples are

selected randomly.
11 / 46

Gradient descents

Algorithm 4: Mini-batch gradient descent

Data: Training dataset of N examples

Result: Optimized weights w
Initialize weights randomly;

while not converged do

Compute estimate gradient, ∇J(w) ' 1
n ∑n<N

1 L(xi) // Often best balance in

practice

Update weights, w← w− η∇J(w);

end

return w;

• Batch GD: J is the average of a loss L over the entire dataset

• Online GD: J is the loss on a single training example

• Mini-batch GD: J is the average loss over a subset of the training dataset

Gradient descent algorithms are stochastic when the training examples are

selected randomly.
11 / 46

SGD example: house price prediction

• features x ∈ {surface area, number

of rooms, exposure, parking...}

• labels y ∈ R

→ need to change activation!

φ(x) = x is simple, differentiable,

and its codomain is R

• What cost function should we use?

let’s try the average error
1
n ∑x y− ŷ(x)

12 / 46

SGD example: house price prediction

• features x ∈ {surface area, number

of rooms, exposure, parking...}

• labels y ∈ R

→ need to change activation!

φ(x) = x is simple, differentiable,

and its codomain is R

• What cost function should we use?

let’s try the average error
1
n ∑x y− ŷ(x)

12 / 46

SGD example: house price prediction

• features x ∈ {surface area, number

of rooms, exposure, parking...}

• labels y ∈ R

→ need to change activation!

φ(x) = x is simple, differentiable,

and its codomain is R

• What cost function should we use?

let’s try the average error
1
n ∑x y− ŷ(x)

12 / 46

SGD example: house price prediction

• features x ∈ {surface area, number

of rooms, exposure, parking...}

• labels y ∈ R

→ need to change activation!

φ(x) = x is simple, differentiable,

and its codomain is R

• What cost function should we use?

let’s try the average error
1
n ∑x y− ŷ(x)

12 / 46

SGD: mean error

∆w = −η∇J (w), and specifically:

∆wi = −η
∂

∂wi
J (w)

= −η
∂

∂wi

1
n ∑

x
y− ŷ(x)

= −η
1
n ∑

x

∂

∂wi
y− ŷ(x)

= −η
1
n ∑

x

∂

∂wi
y−∑

i
xiwi

= η
1
n ∑

x
xi

No dependence on the target! The weights will drift without ever converging.

−10 + 10 = 0 → loss should be non-negative!
13 / 46

SGD: mean squared error (MSE)

MSE = 1
2n ∑x(y− ŷ(x))2

∆wi = −η
∂

∂wi
J (w)

= −η
∂

∂wi

1
2n ∑

x
(y− ŷ(x))2

=
−η

2n ∑
x

∂

∂wi
(y− ŷ(x))2

=
−η

2n ∑
x
−2xi(y− ŷ(x))

=
η

n ∑
x
(y− ŷ(x))xi

The choice of loss function is important!

14 / 46

Beyond learning linear functions

We are learning weights for a perceptron:

a linear combination of inputs.

How can we learn non-linear functions?

Use multiple layers of neurons!

Our perceptron learns the linear best fit, but we can do better.

15 / 46

Beyond learning linear functions

We are learning weights for a perceptron:

a linear combination of inputs.

How can we learn non-linear functions?

Use multiple layers of neurons!

Our perceptron learns the linear best fit, but we can do better.

15 / 46

Multi-layer perceptron (MLP)

neural network: a series of layers with weights and activations,

transforming an input into an output.

Can this learn non-linear function? Let’s put it to the test!

16 / 46

https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=xor®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=3,3&seed=0.00164&showTestData=false&discretize=false&percTrainData=70&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Multi-layer perceptron (MLP)

We need to introduce non-linearities, e.g., using the sigmoid as the activation

functions in hidden layers.

σ(x) =
1

1 + e−x σ′(x) = (1−σ(x))σ(x)

0

0.5

1

−6 −4 −2 0 2 4 6

17 / 46

Learning with a MLP

Two phases:

• forward propagation (inference)

input passes through the network to produce the output, used to compute the

loss

• backpropagation

18 / 46

Learning with a MLP

Two phases:

• forward propagation (inference)

• backpropagation

gradients are propagated backward through the network, allowing us to

perform an SGD update

18 / 46

Backpropagation: simple example

What is the influence of w(1)
1 on L(ŷ)?

How should I modify its value to decrease the loss?

∂L
∂w(1)

1

= ?

19 / 46

Backpropagation: simple example

What is the influence of w(1)
1 on L(ŷ)?

How should I modify its value to decrease the loss?

∂L
∂w(1)

1

= ?

19 / 46

Backpropagation: simple example

∂L
∂w(1)

1

=
∂L
∂ŷ︸︷︷︸

−2(y− ŷ)

· ∂ŷ
∂z(2)︸ ︷︷ ︸

1

· ∂z(2)

∂a(1)︸ ︷︷ ︸
w(2)

1

· ∂a(1)

∂z(1)︸ ︷︷ ︸
σ′(z(1))

· ∂z(1)

∂w(1)
1︸ ︷︷ ︸

x

19 / 46

Backpropagation: simple example

∂L
∂w(1)

1

=
∂L
∂ŷ︸︷︷︸

−2(y− ŷ)

· ∂ŷ
∂z(2)︸ ︷︷ ︸

1

· ∂z(2)

∂a(1)︸ ︷︷ ︸
w(2)

1

· ∂a(1)

∂z(1)︸ ︷︷ ︸
σ′(z(1))

· ∂z(1)

∂w(1)
1︸ ︷︷ ︸

x

19 / 46

Backpropagation: simple example

∂L
∂w(1)

1

=
∂L
∂ŷ︸︷︷︸

−2(y− ŷ)

· ∂ŷ
∂z(2)︸ ︷︷ ︸

1

· ∂z(2)

∂a(1)︸ ︷︷ ︸
w(2)

1

· ∂a(1)

∂z(1)︸ ︷︷ ︸
σ′(z(1))

· ∂z(1)

∂w(1)
1︸ ︷︷ ︸

x

19 / 46

Backpropagation: simple example

∂L
∂w(1)

1

=
∂L
∂ŷ︸︷︷︸

−2(y− ŷ)

· ∂ŷ
∂z(2)︸ ︷︷ ︸

1

· ∂z(2)

∂a(1)︸ ︷︷ ︸
w(2)

1

· ∂a(1)

∂z(1)︸ ︷︷ ︸
σ′(z(1))

· ∂z(1)

∂w(1)
1︸ ︷︷ ︸

x

19 / 46

Backpropagation: simple example

∂L
∂w(1)

1

=
∂L
∂ŷ︸︷︷︸

−2(y− ŷ)

· ∂ŷ
∂z(2)︸ ︷︷ ︸

1

· ∂z(2)

∂a(1)︸ ︷︷ ︸
w(2)

1

· ∂a(1)

∂z(1)︸ ︷︷ ︸
σ′(z(1))

· ∂z(1)

∂w(1)
1︸ ︷︷ ︸

x

19 / 46

Backpropagation: simple example

∂L
∂w(1)

1

=
∂L
∂ŷ︸︷︷︸

−2(y− ŷ)

· ∂ŷ
∂z(2)︸ ︷︷ ︸

1

· ∂z(2)

∂a(1)︸ ︷︷ ︸
w(2)

1

· ∂a(1)

∂z(1)︸ ︷︷ ︸
σ′(z(1))

· ∂z(1)

∂w(1)
1︸ ︷︷ ︸

x

19 / 46

Backpropagation: simple example

Remembering SGD, ∆w = −η∇J (w)

Hence, ∆w(1)
1 = η2(y− ŷ)w(2)

1 σ(z(1))(1− σ(z(1)))x

We can reuse computations:

∆w(1)
0 = η2(y− ŷ)w(2)

1 σ(z(1))(1− σ(z(1)))x
∆w(2)

0 = η2(y− ŷ)w(2)
1 σ(z(1))(1− σ(z(1)))x

19 / 46

Learning rate

20 / 46

Finding the optimal weights

In practice, the loss landscape is very complex with billions of dimensions!

21 / 46

MLP: summary

Multi-layer perceptrons are universal

approximators: they can approximate

any continuous function given that they

are wide/deep enough.

But convergence can be ineffective

(non-convex and high-dimensional

space, vanishing gradients...) and may

require some tricks in practice.

To play around with MLPs online: https://playground.tensorflow.org

22 / 46

https://playground.tensorflow.org

Convolutional Neural Networks (CNN) [LeCun et al., 1989]

How can we learn from images as inputs?

23 / 46

Convolutional Neural Networks (CNN) [LeCun et al., 1989]

How can we learn from images as inputs?

(Bad) solution

We can use an MLP! However:

• a huge number of weights to learn (an image has at least 1000 dimensions)

• the problem of translation

23 / 46

Convolutional Neural Networks (CNN) [LeCun et al., 1989]

How can we learn from images as inputs?

Good solution

Adapt the neurons and network to perform convolution.

23 / 46

CNN: the convolution operation

24 / 46

CNN: the convolution operation

24 / 46

CNN: the convolution operation

24 / 46

CNN: the convolution operation

24 / 46

CNN: the convolution operation

24 / 46

CNN: the convolution operation

24 / 46

CNN: the convolution operation

24 / 46

CNN: the convolution operation

24 / 46

CNN: the convolution operation

24 / 46

CNN: convolutional neuron

25 / 46

CNN: convolutional layer

26 / 46

Convolutional layer - padding

27 / 46

Convolutional layer - stride

28 / 46

Convolutional layer - stride

28 / 46

Convolutional layer - stride

28 / 46

Convolutional layer - stride

28 / 46

Convolutional layer - summary

• Input size (of the layer and of every neuron): Channel×Width×Height

• Output size (of a neuron):

Wout︸︷︷︸
width or height

=
⌊ Input total width︷ ︸︸ ︷

Win + 2× padding−kernel_size
stride︸ ︷︷ ︸

Number of possible kernel positions

⌋
+1︸︷︷︸

Starting position

• Output size (of a layer): Number of neurons×Wout × Hout

29 / 46

Pooling layer

A high resolution/dimensionality may not be needed to recognize the content...

30 /46

Pooling layer

A high resolution/dimensionality may not be needed to recognize the content...

...but increasing the stride can be risky...

30 /46

Pooling layer

A high resolution/dimensionality may not be needed to recognize the content...

...but increasing the stride can be risky...

...so we tend to prefer max or average pooling

30 /46

Pooling layer

30 /46

Pooling layer

30 /46

Pooling layer

30 /46

Pooling layer

30 /46

Pooling layer

Adding pooling layers helps with:

• removing redundant information

• reducing the amount of computations and memory needed

• making the model more robust to small variations in the input

30 /46

CNN - architecture and learning

Each neuron does a weighted sum: we can apply SGD on the loss function!

• the weights (kernel) are shared between the neurons of a convolutional layer, so the

gradient is aggredated (sum or average)

• for pooling layers, we either backpropagate where the data come from (for max

pooling), or do as for any other weighted sum (for average pooling)

31 / 46

CNN - architecture and learning

Each neuron does a weighted sum: we can apply SGD on the loss function!

• the weights (kernel) are shared between the neurons of a convolutional layer, so the

gradient is aggredated (sum or average)

• for pooling layers, we either backpropagate where the data come from (for max

pooling), or do as for any other weighted sum (for average pooling)

31 / 46

Convolutional Neural Network - AlexNet (2012)

Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))

ReLU()

MaxPool2d(kernel_size=3, stride=2)

Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

ReLU()

MaxPool2d(kernel_size=3, stride=2)

Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=3, stride=2)

AdaptiveAvgPool2d(output_size=(6, 6))

Dropout(p=0.5)

Linear(in_features=9216, out_features=4096, bias=True)

ReLU()

Dropout(p=0.5)

Linear(in_features=4096, out_features=4096, bias=True)

ReLU()

Linear(in_features=4096, out_features=1000, bias=True)

AlexNet

32 / 46

Convolutional Neural Network - VGG16 (2014)

Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

AdaptiveAvgPool2d(output_size=(7, 7))

Dropout(p=0.5)

Linear(in_features=25088, out_features=4096, bias=True)

ReLU()

Dropout(p=0.5)

Linear(in_features=4096, out_features=4096, bias=True)

ReLU()

Linear(in_features=4096, out_features=1000, bias=True)

VGG16

33 / 46

CNN summary

Principles

• Use of convolution for translation invariance and weights sharing

• Pooling to reduce dimensionality

• A MLP at the end of the architecture (no more spatial structure)

• Architecture adaptable to 1D (audio), 3D (video), or graphs...

Couche 1 Couche 2
 Couche 3
 Couche 4

34 / 46

Deep learning summary

Why does it work?

• Universal approximator + a huge amount of data/GPUs... only part of the story

• Hierarchical and automatic learning of features

• Local minima seems quite good [Choromanska et al., 2015]

• Deals better with data/tasks in practice (compared to shallow networks)

• Easy to incorporate inductive biases (e.g., convolution for images)

35 / 46

Deep learning summary

Why does it work?

• Universal approximator + a huge amount of data/GPUs... only part of the story

• Hierarchical and automatic learning of features

• Local minima seems quite good [Choromanska et al., 2015]

• Deals better with data/tasks in practice (compared to shallow networks)

• Easy to incorporate inductive biases (e.g., convolution for images)

35 / 46

Deep learning summary

Why does it work?

• Universal approximator + a huge amount of data/GPUs... only part of the story

• Hierarchical and automatic learning of features

• Local minima seems quite good [Choromanska et al., 2015]

• Deals better with data/tasks in practice (compared to shallow networks)

• Easy to incorporate inductive biases (e.g., convolution for images)

35 / 46

Deep learning summary

Why does it work?

• Universal approximator + a huge amount of data/GPUs... only part of the story

• Hierarchical and automatic learning of features

• Local minima seems quite good [Choromanska et al., 2015]

• Deals better with data/tasks in practice (compared to shallow networks)

• Easy to incorporate inductive biases (e.g., convolution for images)

35 / 46

Deep learning summary

Why does it work?

• Universal approximator + a huge amount of data/GPUs... only part of the story

• Hierarchical and automatic learning of features

• Local minima seems quite good [Choromanska et al., 2015]

• Deals better with data/tasks in practice (compared to shallow networks)

• Easy to incorporate inductive biases (e.g., convolution for images)

35 / 46

Deep learning zoo

36 / 46

Deep learning zoo

36 / 46

Deep learning zoo

https://www.asimovinstitute.org/neural-network-zoo/

36 / 46

https://www.asimovinstitute.org/neural-network-zoo/

Recurrent neural networks (RNN)

37 / 46
Diagrams by the Amidi brothers

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Recurrent neural networks (RNN) - applications

one to one

38 / 46
Diagrams by the Amidi brothers

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Recurrent neural networks (RNN) - applications

one to many

38 / 46
Diagrams by the Amidi brothers

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Recurrent neural networks (RNN) - applications

many to one

38 / 46
Diagrams by the Amidi brothers

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Recurrent neural networks (RNN) - applications

many to many (aligned)

38 / 46
Diagrams by the Amidi brothers

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Recurrent neural networks (RNN) - applications

many to many (split)

38 / 46
Diagrams by the Amidi brothers

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Autoencoders (AE)

Unsupervised: L(x) = d(x, D(E(x)))
39 / 46

Autoencoders (AE) - applications

• Denoising:

L(x) = d(x, D(E(x + ε)))

• Dimensionality reduction using the

latent variable/code

• Fraud detection: reconstruction error

increases on anomalous data points

• Image compression (convolutional

autoencoders)

40 /46

Autoencoders (AE) - applications

• Denoising:

L(x) = d(x, D(E(x + ε)))

• Dimensionality reduction using the

latent variable/code

• Fraud detection: reconstruction error

increases on anomalous data points

• Image compression (convolutional

autoencoders)

40 /46

Autoencoders (AE) - applications

• Denoising:

L(x) = d(x, D(E(x + ε)))

• Dimensionality reduction using the

latent variable/code

• Fraud detection: reconstruction error

increases on anomalous data points

• Image compression (convolutional

autoencoders)

40 /46

Autoencoders (AE) - applications

• Denoising:

L(x) = d(x, D(E(x + ε)))

• Dimensionality reduction using the

latent variable/code

• Fraud detection: reconstruction error

increases on anomalous data points

• Image compression (convolutional

autoencoders)

40 /46

Generative adversarial networks (GAN)

https://thispersondoesnotexist.com/

41 / 46

https://thispersondoesnotexist.com/

Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

– Balanced/representative data

– Data augmentations: e.g., changing the color, zoom, or orientation for

images

– Normalizing data: x−x̄
σ(x)

– Use of mini batchs

– Use of train/test/validation datasets

• Choice of the model

• Training

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

– Balanced/representative data

– Data augmentations: e.g., changing the color, zoom, or orientation for

images

– Normalizing data: x−x̄
σ(x)

– Use of mini batchs

– Use of train/test/validation datasets

• Choice of the model

• Training

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

– Balanced/representative data

– Data augmentations: e.g., changing the color, zoom, or orientation for

images

– Normalizing data: x−x̄
σ(x)

– Use of mini batchs

– Use of train/test/validation datasets

• Choice of the model

• Training

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

– Balanced/representative data

– Data augmentations: e.g., changing the color, zoom, or orientation for

images

– Normalizing data: x−x̄
σ(x)

– Use of mini batchs

– Use of train/test/validation datasets

• Choice of the model

• Training

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

– Balanced/representative data

– Data augmentations: e.g., changing the color, zoom, or orientation for

images

– Normalizing data: x−x̄
σ(x)

– Use of mini batchs

– Use of train/test/validation datasets

• Choice of the model

• Training

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

• Choice of the model

– Type of architecture w.r.t. the data / problem

– Choice of the activation function

• Training

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

• Choice of the model

– Type of architecture w.r.t. the data / problem

– Choice of the activation function

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Sigmoid
Tanh
Dérivée de Sigmoid
Dérivée de Tanh

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10 ReLU
Dérivée de ReLU

• Training

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

– Loss function:

– regression: (Mean) squared error:
1
2 ∑

x,i
(ti − yi)

2

– classification: softmax + cross entropy: ∑
x
− log

eyt

∑i eyi

– Regularisation: +||w|| in the loss function or drop out (some weights are

randomly set to 0)

– Choice of the optimizer: SGD, SGD + momentum, Adagrad, Adam

– Overfitting, underfitting, early stopping

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

– Loss function:

– regression: (Mean) squared error:
1
2 ∑

x,i
(ti − yi)

2

– classification: softmax + cross entropy: ∑
x
− log

eyt

∑i eyi

– Regularisation: +||w|| in the loss function or drop out (some weights are

randomly set to 0)

– Choice of the optimizer: SGD, SGD + momentum, Adagrad, Adam

– Overfitting, underfitting, early stopping

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

– Loss function:

– regression: (Mean) squared error:
1
2 ∑

x,i
(ti − yi)

2

– classification: softmax + cross entropy: ∑
x
− log

eyt

∑i eyi

– Regularisation: +||w|| in the loss function or drop out (some weights are

randomly set to 0)

– Choice of the optimizer: SGD, SGD + momentum, Adagrad, Adam

– Overfitting, underfitting, early stopping

• Getting the better performances

42 / 46

Deep learning in practice

Overfitting, underfitting, and early stopping

42 / 46

Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

– Loss function:

– regression: (Mean) squared error:
1
2 ∑

x,i
(ti − yi)

2

– classification: softmax + cross entropy: ∑
x
− log

eyt

∑i eyi

– Regularisation: +||w|| in the loss function or drop out (some weights are

randomly set to 0)

– Choice of the optimizer: SGD, SGD + momentum, Adagrad, Adam

– Overfitting, underfitting, early stopping

• Getting the better performances

42 / 46

Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

• Getting the better performances

– Hyperparameters: start with default values...

– for the MLP, usually a big 1st layer, then decreasing size

– for the CNN, usually the number of channels increases at each layer

(to ”compensate” the decreasing size of the feature maps)

– ...then empirically find what works on the validation set (typically with a

grid search)

– Fine tuning: use of a (”general”) pre trained model that is locally adapted

to the data

42 / 46

Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

• Getting the better performances

– Hyperparameters: start with default values...

– for the MLP, usually a big 1st layer, then decreasing size

– for the CNN, usually the number of channels increases at each layer

(to ”compensate” the decreasing size of the feature maps)

– ...then empirically find what works on the validation set (typically with a

grid search)

– Fine tuning: use of a (”general”) pre trained model that is locally adapted

to the data

42 / 46

Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

• Getting the better performances

– Hyperparameters: start with default values...

– for the MLP, usually a big 1st layer, then decreasing size

– for the CNN, usually the number of channels increases at each layer

(to ”compensate” the decreasing size of the feature maps)

– ...then empirically find what works on the validation set (typically with a

grid search)

– Fine tuning: use of a (”general”) pre trained model that is locally adapted

to the data

42 / 46

Limitations - Over training?

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530.

43 / 46

Limitations - Bias

Buolamwini, Joy, and Timnit Gebru. ”Gender shades: Intersectional accuracy disparities in commercial gender classification.” Conference on Fairness,

Accountability and Transparency. 2018

44 / 46

Limitations - Environmental impact

• Impact of digital technologies is estimated between 1.5 and 4% of global

greenhouse gases emissions (∼37 billions of tons eqC02 in 2023)

• AI contribution (very) difficult to estimate, but clearly growing.

• For instance (estimations), GPT3 training required 1,287 MWh (∼500 tons

eqCO2)...

• ...but ChatGPT inference needs 564 MWh (∼220 tons eqCO2) every day (i.e.

∼80000 tons eqCO2 per year).

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). The climate impact of ICT: A review of estimates, trends and

regulations. arXiv preprint arXiv:2102.02622.

Patel, D., & Ahmad, A. (2023). The Inference Cost Of Search Disruption–Large Language Model Cost Analysis. Verfügbar unter https://www.

semianalysis. com/p/theinference-cost-of-search-disruption.

45 / 46

Limitations - Environmental impact

• Impact of digital technologies is estimated between 1.5 and 4% of global

greenhouse gases emissions (∼37 billions of tons eqC02 in 2023)

• AI contribution (very) difficult to estimate, but clearly growing.

• For instance (estimations), GPT3 training required 1,287 MWh (∼500 tons

eqCO2)...

• ...but ChatGPT inference needs 564 MWh (∼220 tons eqCO2) every day (i.e.

∼80000 tons eqCO2 per year).

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). The climate impact of ICT: A review of estimates, trends and

regulations. arXiv preprint arXiv:2102.02622.

Patel, D., & Ahmad, A. (2023). The Inference Cost Of Search Disruption–Large Language Model Cost Analysis. Verfügbar unter https://www.

semianalysis. com/p/theinference-cost-of-search-disruption.

45 / 46

Limitations - Environmental impact

• Impact of digital technologies is estimated between 1.5 and 4% of global

greenhouse gases emissions (∼37 billions of tons eqC02 in 2023)

• AI contribution (very) difficult to estimate, but clearly growing.

• For instance (estimations), GPT3 training required 1,287 MWh (∼500 tons

eqCO2)...

• ...but ChatGPT inference needs 564 MWh (∼220 tons eqCO2) every day (i.e.

∼80000 tons eqCO2 per year).

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). The climate impact of ICT: A review of estimates, trends and

regulations. arXiv preprint arXiv:2102.02622.

Patel, D., & Ahmad, A. (2023). The Inference Cost Of Search Disruption–Large Language Model Cost Analysis. Verfügbar unter https://www.

semianalysis. com/p/theinference-cost-of-search-disruption.

45 / 46

Limitations - Environmental impact

• Impact of digital technologies is estimated between 1.5 and 4% of global

greenhouse gases emissions (∼37 billions of tons eqC02 in 2023)

• AI contribution (very) difficult to estimate, but clearly growing.

• For instance (estimations), GPT3 training required 1,287 MWh (∼500 tons

eqCO2)...

• ...but ChatGPT inference needs 564 MWh (∼220 tons eqCO2) every day (i.e.

∼80000 tons eqCO2 per year).

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). The climate impact of ICT: A review of estimates, trends and

regulations. arXiv preprint arXiv:2102.02622.

Patel, D., & Ahmad, A. (2023). The Inference Cost Of Search Disruption–Large Language Model Cost Analysis. Verfügbar unter https://www.

semianalysis. com/p/theinference-cost-of-search-disruption.

45 / 46

References

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss surfaces of multilayer networks. In Artificial

intelligence and statistics, pages 192–204. PMLR, 2015.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied

to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):

115–133, 1943.

Murray Rosenblatt. Some purely deterministic processes. Journal of Mathematics and Mechanics, pages 801–810, 1957.

46 / 46

	References

