Deep learning

Timon Deschamps

timon.deschamps@univ-lyon1.fr

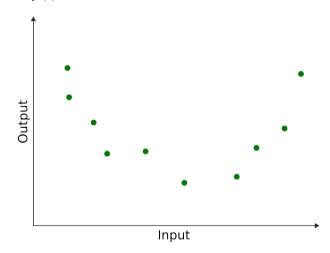
September 2025

What you'll learn

- Deep learning principles
- Perceptron, multilayer perceptron
- Convolutional neural networks
- Deep learning in practice
- Limitations of deep learning

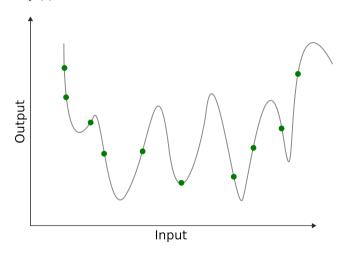
Formally, we want to learn a function $f(\cdot)$ that maps inputs to desired outputs.

- memorization
- generalization
- explainability, fairness, robustness, efficiency...



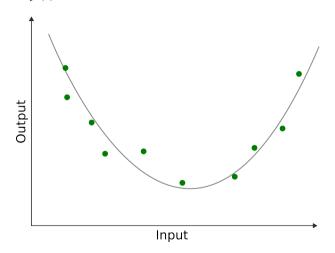
Formally, we want to learn a function $f(\cdot)$ that maps inputs to desired outputs.

- memorization
- generalization
- explainability, fairness, robustness, efficiency...



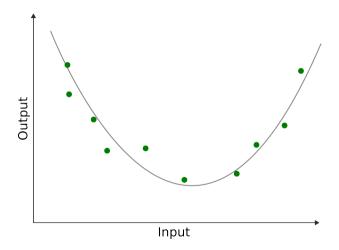
Formally, we want to learn a function $f(\cdot)$ that maps inputs to desired outputs.

- memorization
- generalization
- explainability, fairness, robustness, efficiency...



Formally, we want to learn a function $f(\cdot)$ that maps inputs to desired outputs.

- memorization
- generalization
- explainability, fairness, robustness, efficiency...



Types of learning

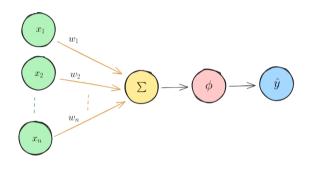
- supervised: y = f(x), with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$
 - regression: \mathcal{Y} is continuous, e.g., \mathbb{R}^n
 - classification: $\mathcal Y$ is discrete, e.g., $\mathcal Y = \{ \mathsf{dog}, \mathsf{cat} \}$
- unsupervised: f(x), with $x \in \mathcal{X}$
 - clustering
 - dimensionality reduction
- reinforcement...

Types of learning

- supervised: y = f(x), with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$
 - regression: \mathcal{Y} is continuous, e.g., \mathbb{R}^n
 - classification: $\mathcal Y$ is discrete, e.g., $\mathcal Y = \{ \mathsf{dog}, \mathsf{cat} \}$
- unsupervised: f(x), with $x \in \mathcal{X}$
 - clustering
 - dimensionality reduction
- reinforcement...

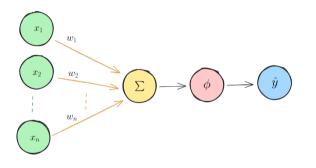
Types of learning

- supervised: y = f(x), with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$
 - regression: \mathcal{Y} is continuous, e.g., \mathbb{R}^n
 - classification: \mathcal{Y} is discrete, e.g., $\mathcal{Y} = \{ dog, cat \}$
- unsupervised: f(x), with $x \in \mathcal{X}$
 - clustering
 - dimensionality reduction
- reinforcement...



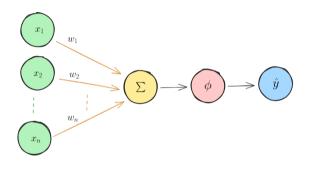
- inputs/features x_i
- weights w_i
- sum of the products ∑
- activation function ϕ
- output!

$$\hat{y} = \phi(\sum_{i=1}^n x_i w_i)$$



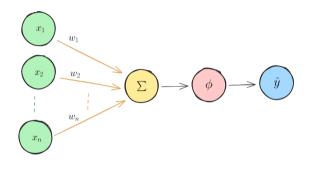
- inputs/features x_i
- weights w_i
- sum of the products ∑
- activation function ϕ
- output!

$$\hat{y} = \phi(\sum_{i=1}^n x_i w_i)$$



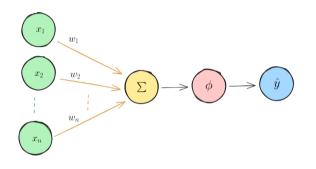
- inputs/features x_i
- weights w_i
- sum of the products \sum
- activation function ϕ
- output!

$$\hat{y} = \phi(\sum_{i=1}^{n} x_i w_i)$$



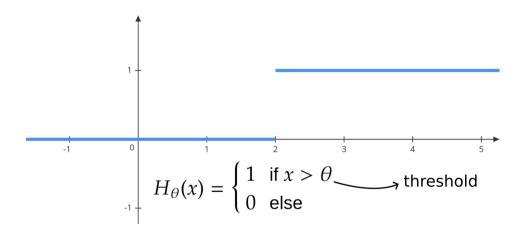
- inputs/features x_i
- weights w_i
- sum of the products \sum
- activation function ϕ
- output!

$$\hat{y} = \phi(\sum_{i=1}^n x_i w_i)$$

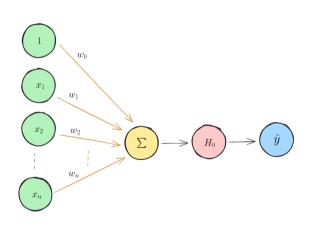


- inputs/features x_i
- weights w_i
- sum of the products Σ
- activation function ϕ
- output!

$$\hat{y} = \phi(\sum_{i=1}^n x_i w_i)$$



The perceptron algorithm [Rosenblatt, 1957]



Using $x_0 = 1$ and $w_0 = -\theta$:

$$\hat{\mathbf{y}} = H_{\theta}(\sum_{i=1}^{n} x_i w_i)$$

$$= H_0(\sum_{i=0}^{n} x_i w_i)$$

$$= H_0(\mathbf{x}^{\top} \mathbf{w})$$

with
$$\mathbf{x} = \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_n \end{bmatrix}$

The perceptron: learning

Instead of using hand-set values for weights, Rosenblatt proposes to **learn** them.

Learning rule:
$$\Delta w_i = \eta x_i (y - \hat{y})$$

ightarrow Intuitively, if the prediction is larger than the target, we need to reduce the weights, and vice versa.

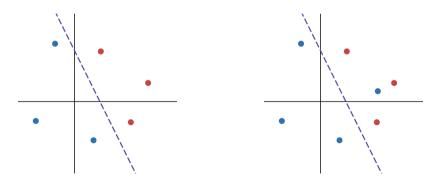
Let's learn the **OR** function by iterating on four learning examples:

$$\mathbf{x}^1 = \begin{bmatrix} \mathbf{1} \\ 0 \\ 0 \end{bmatrix} \rightarrow 0, \quad \mathbf{x}^2 = \begin{bmatrix} \mathbf{1} \\ 1 \\ 0 \end{bmatrix} \rightarrow 1, \quad \mathbf{x}^3 = \begin{bmatrix} \mathbf{1} \\ 0 \\ 1 \end{bmatrix} \rightarrow 1, \quad \mathbf{x}^4 = \begin{bmatrix} \mathbf{1} \\ 1 \\ 1 \end{bmatrix} \rightarrow 1$$

The perceptron: properties

Properties

- 1. linear classifier, i.e., separates space with an hyperplan
- 2. weight vector is orthogonal to the hyperplan, bias controls the y-intercept
- 3. converges for infinitesimally small η if the training data is linearly separable



From perceptron to SGD

Problems with the perceptron:

- can only perform binary classification
- does not converge when data is not linearly separable (or noisy)
- updates in an abrupt manner and does not use well classified samples

Stochastic gradient descent (SGD):

Goal: update weights to minimize the cost function $\mathcal J$

$$\Delta \mathbf{w} = -\eta \nabla \mathcal{J}(\mathbf{w})$$

- updates in a smoother way than perceptron (uses all samples)
- converges even for non linearly separable data (for appropriately chosen η)
- needs a differentiable cost function!

From perceptron to SGD

Problems with the perceptron:

- can only perform binary classification
- does not converge when data is not linearly separable (or noisy)
- updates in an abrupt manner and does not use well classified samples

Stochastic gradient descent (SGD):

Goal: update weights to minimize the cost function ${\mathcal J}$

$$\Delta \mathbf{w} = -\eta \nabla \mathcal{J}(\mathbf{w})$$

- updates in a smoother way than perceptron (uses all samples)
- converges even for non linearly separable data (for appropriately chosen η)
- needs a differentiable cost function!

Algorithm 1: Gradient descent

Data: Training dataset of N examples

Result: Optimized weights w **Initialize** weights randomly; while not converged do

Compute true gradient, $\nabla J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(x_i)$ // Expensive but convergence is theoretically guaranteed

Update weights, $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla J(\mathbf{w})$;

end

return w;

- \bullet Batch GD: ${\mathcal J}$ is the average of a loss ${\mathcal L}$ over the entire dataset
- ullet Online GD: ${\cal J}$ is the loss on a single training example
- Mini-batch GD: $\mathcal J$ is the average loss over a subset of the training dataset Gradient descent algorithms are **stochastic** when the training examples are selected randomly.

Algorithm 2: Online gradient descent

Data: Training dataset of N examples

Result: Optimized weights w Initialize weights randomly; while not converged do

Compute estimate gradient, $\nabla J(\mathbf{w}) \simeq \mathcal{L}(x_i)$ // Faster, but noisier: one example is not representative of the training data

Update weights, $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla J(\mathbf{w})$;

end

return w;

- Batch GD: $\mathcal J$ is the average of a loss $\mathcal L$ over the entire dataset
- ullet Online GD: ${\mathcal J}$ is the loss on a single training example
- Mini-batch GD: $\mathcal J$ is the average loss over a subset of the training dataset Gradient descent algorithms are **stochastic** when the training examples are selected randomly.

Algorithm 3: Mini-batch gradient descent

Data: Training dataset of N examples

Result: Optimized weights w Initialize weights randomly; while not converged do

Compute estimate gradient, $\nabla J(\mathbf{w}) \simeq \frac{1}{n} \sum_{i=1}^{n < N} \mathcal{L}(x_i)$ // Often best balance in practice

Update weights, $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla J(\mathbf{w})$;

end

return w;

- ullet Batch GD: ${\mathcal J}$ is the average of a loss ${\mathcal L}$ over the entire dataset
- ullet Online GD: ${\cal J}$ is the loss on a single training example
- ullet Mini-batch GD: ${\cal J}$ is the average loss over a subset of the training dataset

Gradient descent algorithms are **stochastic** when the training examples are selected randomly.

Algorithm 4: Mini-batch gradient descent

Data: Training dataset of N examples

Result: Optimized weights w **Initialize** weights randomly;

while not converged do

Compute estimate gradient, $\nabla J(\mathbf{w}) \simeq \frac{1}{n} \sum_{i=1}^{n < N} \mathcal{L}(x_i)$ // Often best balance in practice

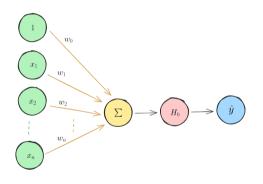
Update weights, $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla J(\mathbf{w})$;

end

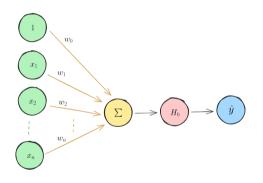
return w;

- ullet Batch GD: ${\mathcal J}$ is the average of a loss ${\mathcal L}$ over the entire dataset
- ullet Online GD: ${\cal J}$ is the loss on a single training example
- ullet Mini-batch GD: ${\mathcal J}$ is the average loss over a subset of the training dataset

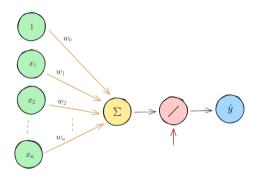
Gradient descent algorithms are **stochastic** when the training examples are selected randomly.



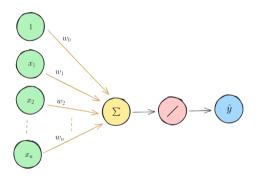
- features x ∈ {surface area, number of rooms, exposure, parking...}
- labels $y \in \mathbb{R}$ \rightarrow need to change activation! $\phi(x) = x$ is simple, differentiable and its codomain is \mathbb{R}
- What cost function should we use let's try the average error $\frac{1}{n}\sum_{x}y-\hat{y}(x)$



- features x ∈ {surface area, number of rooms, exposure, parking...}
- labels $y \in \mathbb{R}$ \rightarrow need to change activation! $\phi(x) = x$ is simple, differentiable, and its codomain is \mathbb{R}
- What cost function should we use let's try the average error $\frac{1}{n}\sum_{x}y-\hat{y}(x)$



- features x ∈ {surface area, number of rooms, exposure, parking...}
- labels $y \in \mathbb{R}$ \rightarrow need to change activation! $\phi(x) = x$ is simple, differentiable, and its codomain is \mathbb{R}
- What cost function should we use let's try the average error $\frac{1}{n}\sum_{x}y-\hat{y}(x)$



- features x ∈ {surface area, number of rooms, exposure, parking...}
- labels $y \in \mathbb{R}$ \rightarrow need to change activation! $\phi(x) = x$ is simple, differentiable, and its codomain is \mathbb{R}
- What cost function should we use? let's try the average error $\frac{1}{n}\sum_{x}y-\hat{y}(x)$

SGD: mean error

 $\Delta \mathbf{w} = -\eta \nabla \mathcal{J}(\mathbf{w})$, and specifically:

$$\Delta w_i = -\eta \frac{\partial}{\partial w_i} \mathcal{J}(\mathbf{w})$$

$$= -\eta \frac{\partial}{\partial w_i} \frac{1}{n} \sum_x y - \hat{y}(x)$$

$$= -\eta \frac{1}{n} \sum_x \frac{\partial}{\partial w_i} y - \hat{y}(x)$$

$$= -\eta \frac{1}{n} \sum_x \frac{\partial}{\partial w_i} y - \sum_i x_i w_i$$

$$= \eta \frac{1}{n} \sum_x x_i$$

No dependence on the target! The weights will drift without ever converging. $-10 + 10 = 0 \rightarrow loss$ should be non-negative!

SGD: mean squared error (MSE)

$$MSE = \frac{1}{2n} \sum_{x} (y - \hat{y}(x))^2$$

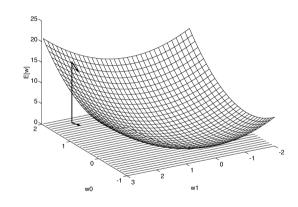
$$\Delta w_i = -\eta \frac{\partial}{\partial w_i} \mathcal{J}(\mathbf{w})$$

$$= -\eta \frac{\partial}{\partial w_i} \frac{1}{2n} \sum_x (y - \hat{y}(x))^2$$

$$= \frac{-\eta}{2n} \sum_x \frac{\partial}{\partial w_i} (y - \hat{y}(x))^2$$

$$= \frac{-\eta}{2n} \sum_x -2x_i (y - \hat{y}(x))$$

$$= \frac{\eta}{n} \sum_x (y - \hat{y}(x)) x_i$$



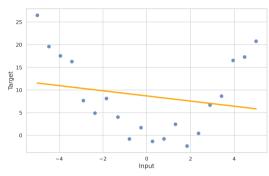
The choice of loss function is important!

Beyond learning linear functions

We are learning weights for a perceptron: a linear combination of inputs.

How can we learn non-linear functions?

Use multiple layers of neurons



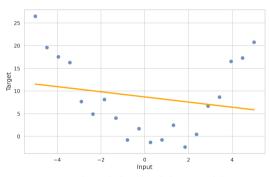
Our perceptron learns the linear best fit, but we can do better.

Beyond learning linear functions

We are learning weights for a perceptron: a linear combination of inputs.

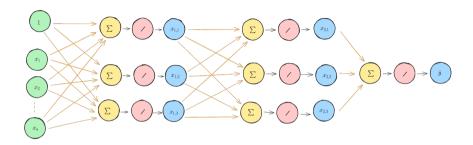
How can we learn non-linear functions?

Use multiple layers of neurons!



Our perceptron learns the linear best fit, but we can do better.

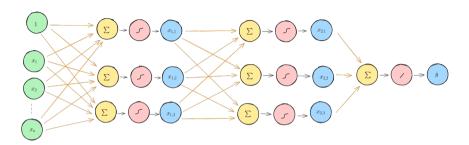
Multi-layer perceptron (MLP)



neural network: a series of layers with weights and activations, transforming an input into an output.

Can this learn non-linear function? Let's put it to the test!

Multi-layer perceptron (MLP)



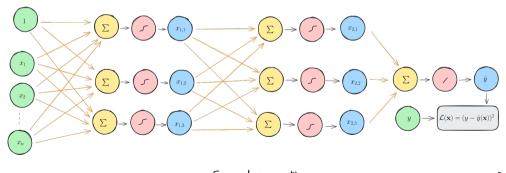
We need to introduce non-linearities, e.g., using the sigmoid as the activation functions in hidden layers.

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \sigma'(x) = (1 - \sigma(x))\sigma(x)$$

Learning with a MLP

Two phases:

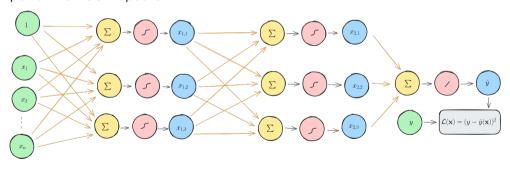
- forward propagation (inference) input passes through the network to produce the output, used to compute the loss
- backpropagation

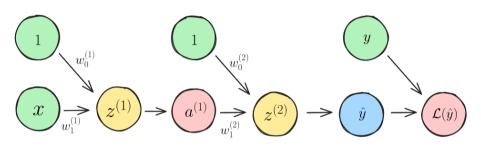


Learning with a MLP

Two phases:

- forward propagation (inference)
- backpropagation
 gradients are propagated backward through the network, allowing us to
 perform an SGD update





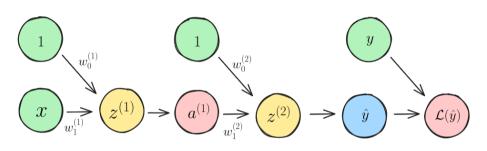
What is the influence of $w_1^{(1)}$ on $\mathcal{L}(\hat{y})$? How should I modify its value to decrease the loss?

$$\frac{\partial \mathcal{L}}{\partial w_1^{(1)}} = 0$$

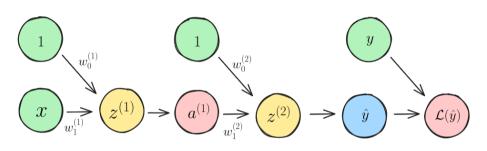


What is the influence of $w_1^{(1)}$ on $\mathcal{L}(\hat{y})$? How should I modify its value to decrease the loss?

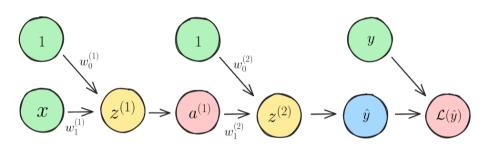
$$\frac{\partial \mathcal{L}}{\partial w_1^{(1)}} = 3$$



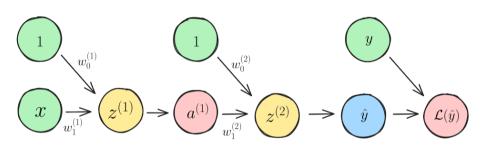
$$\frac{\partial \mathcal{L}}{\partial w_{1}^{(1)}} = \underbrace{\frac{\partial \mathcal{L}}{\partial \hat{y}}}_{-2(y-\hat{y})} \cdot \underbrace{\frac{\partial \hat{y}}{\partial z^{(2)}}}_{1} \cdot \underbrace{\frac{\partial z^{(2)}}{\partial a^{(1)}}}_{w_{1}^{(2)}} \cdot \underbrace{\frac{\partial a^{(1)}}{\partial z^{(1)}}}_{\sigma'(z^{(1)})} \cdot \underbrace{\frac{\partial z^{(1)}}{\partial w_{1}^{(1)}}}_{x}$$



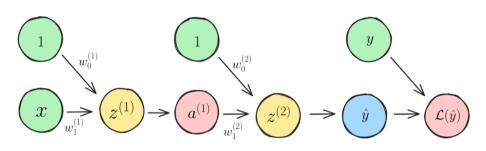
$$\frac{\partial \mathcal{L}}{\partial w_{1}^{(1)}} = \underbrace{\frac{\partial \mathcal{L}}{\partial \hat{y}}}_{-2(y-\hat{y})} \cdot \underbrace{\frac{\partial \hat{y}}{\partial z^{(2)}}}_{1} \cdot \underbrace{\frac{\partial z^{(2)}}{\partial a^{(1)}}}_{w_{1}^{(2)}} \cdot \underbrace{\frac{\partial a^{(1)}}{\partial z^{(1)}}}_{\sigma'(z^{(1)})} \cdot \underbrace{\frac{\partial z^{(1)}}{\partial w_{1}^{(1)}}}_{x}$$



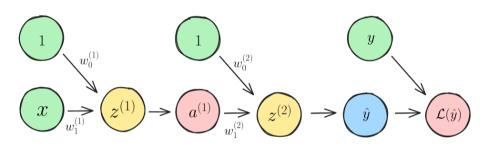
$$\frac{\partial \mathcal{L}}{\partial w_1^{(1)}} = \underbrace{\frac{\partial \mathcal{L}}{\partial \hat{y}}}_{-2(y-\hat{y})} \cdot \underbrace{\frac{\partial \hat{y}}{\partial z^{(2)}}}_{1} \cdot \underbrace{\frac{\partial z^{(2)}}{\partial a^{(1)}}}_{w_1^{(2)}} \cdot \underbrace{\frac{\partial a^{(1)}}{\partial z^{(1)}}}_{\sigma'(z^{(1)})} \cdot \underbrace{\frac{\partial z^{(1)}}{\partial w_1^{(1)}}}_{\chi}$$



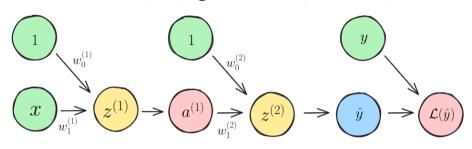
$$\frac{\partial \mathcal{L}}{\partial w_1^{(1)}} = \underbrace{\frac{\partial \mathcal{L}}{\partial \hat{y}}}_{-2(y-\hat{y})} \cdot \underbrace{\frac{\partial \hat{y}}{\partial z^{(2)}}}_{1} \cdot \underbrace{\frac{\partial z^{(2)}}{\partial a^{(1)}}}_{w_1^{(2)}} \cdot \underbrace{\frac{\partial a^{(1)}}{\partial z^{(1)}}}_{\sigma'(z^{(1)})} \cdot \underbrace{\frac{\partial z^{(1)}}{\partial w_1^{(1)}}}_{\chi}$$



$$\frac{\partial \mathcal{L}}{\partial w_1^{(1)}} = \underbrace{\frac{\partial \mathcal{L}}{\partial \hat{y}}}_{-2(y-\hat{y})} \cdot \underbrace{\frac{\partial \hat{y}}{\partial z^{(2)}}}_{1} \cdot \underbrace{\frac{\partial z^{(2)}}{\partial a^{(1)}}}_{w_1^{(2)}} \cdot \underbrace{\frac{\partial a^{(1)}}{\partial z^{(1)}}}_{\sigma'(z^{(1)})} \cdot \underbrace{\frac{\partial z^{(1)}}{\partial w_1^{(1)}}}_{x}$$



$$\frac{\partial \mathcal{L}}{\partial w_1^{(1)}} = \underbrace{\frac{\partial \mathcal{L}}{\partial \hat{y}}}_{-2(y-\hat{y})} \cdot \underbrace{\frac{\partial \hat{y}}{\partial z^{(2)}}}_{1} \cdot \underbrace{\frac{\partial z^{(2)}}{\partial a^{(1)}}}_{w_1^{(2)}} \cdot \underbrace{\frac{\partial a^{(1)}}{\partial z^{(1)}}}_{\sigma'(z^{(1)})} \cdot \underbrace{\frac{\partial z^{(1)}}{\partial w_1^{(1)}}}_{x}$$



Remembering SGD,
$$\Delta w = -\eta \nabla \mathcal{J}(w)$$

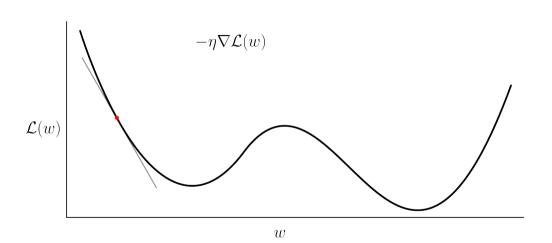
Hence,
$$\Delta w_1^{(1)} = \eta 2(y - \hat{y}) w_1^{(2)} \sigma(z^{(1)}) (1 - \sigma(z^{(1)})) x$$

We can reuse computations:

$$\Delta w_0^{(1)} = \eta 2(y - \hat{y}) w_1^{(2)} \sigma(z^{(1)}) (1 - \sigma(z^{(1)})) x$$

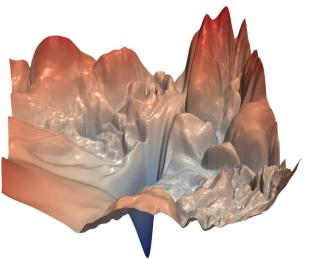
$$\Delta w_0^{(2)} = \eta 2(y - \hat{y}) w_1^{(2)} \sigma(z^{(1)}) (1 - \sigma(z^{(1)})) x$$

Learning rate



Finding the optimal weights

In practice, the loss landscape is very complex with billions of dimensions!



MLP: summary

Multi-layer perceptrons are universal approximators: they can approximate any continuous function given that they are wide/deep enough.

But convergence can be ineffective (non-convex and high-dimensional space, vanishing gradients...) and may require some tricks in practice.

To play around with MLPs online: https://playground.tensorflow.org

Convolutional Neural Networks (CNN) [LeCun et al., 1989]

How can we learn from images as inputs?

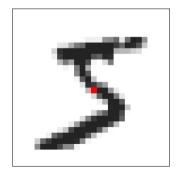
Convolutional Neural Networks (CNN) [LeCun et al., 1989]

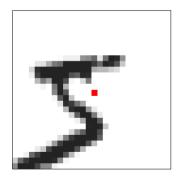
How can we learn from images as inputs?

(Bad) solution

We can use an MLP! However:

- a huge number of weights to learn (an image has at least 1000 dimensions)
- the problem of translation



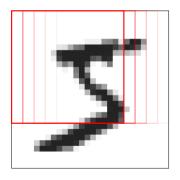


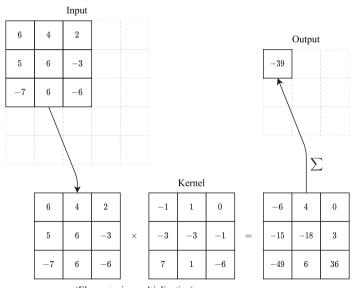
Convolutional Neural Networks (CNN) [LeCun et al., 1989]

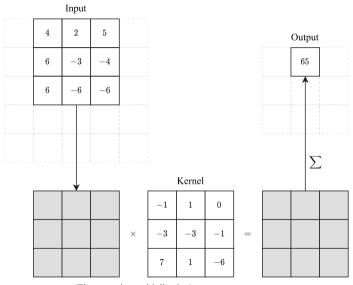
How can we learn from images as inputs?

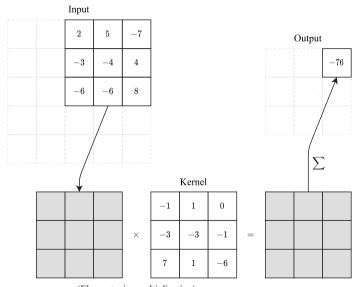
Good solution

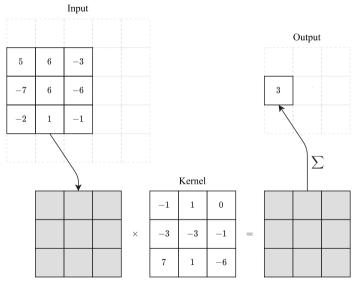
Adapt the neurons and network to perform convolution.

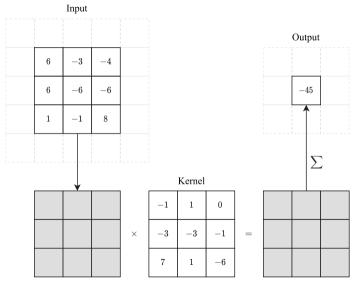


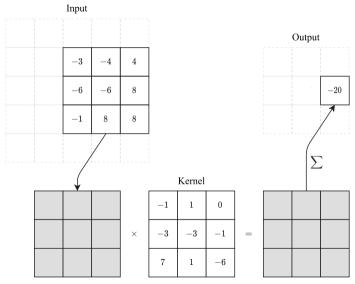


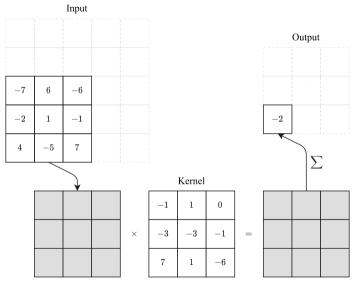


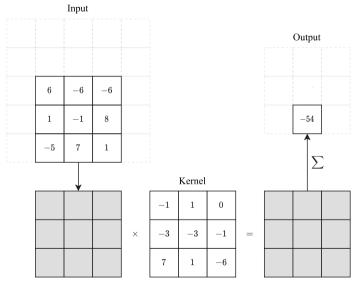


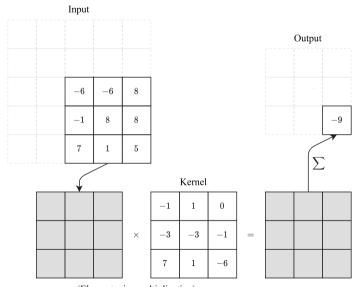






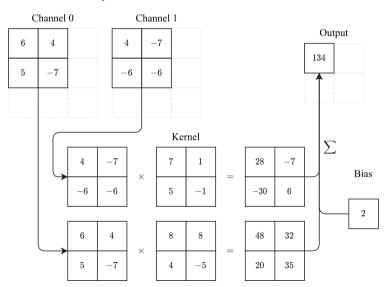




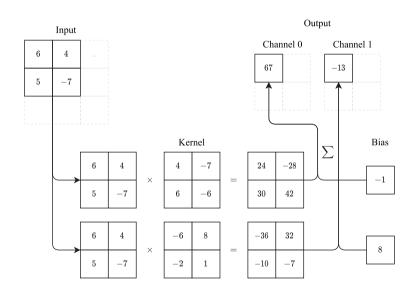


CNN: convolutional neuron

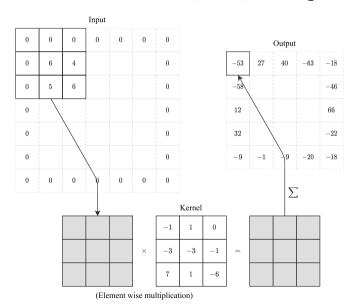
Input

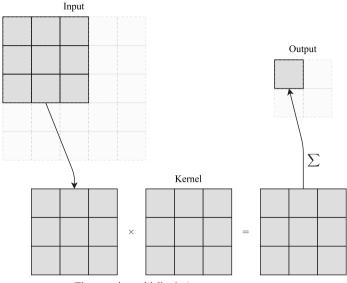


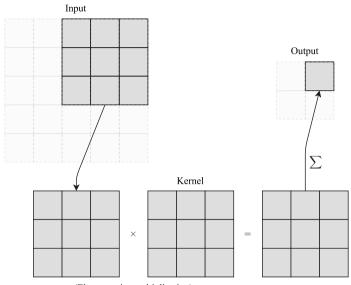
CNN: convolutional layer

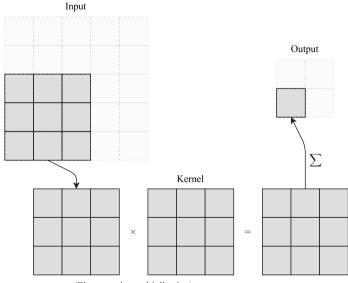


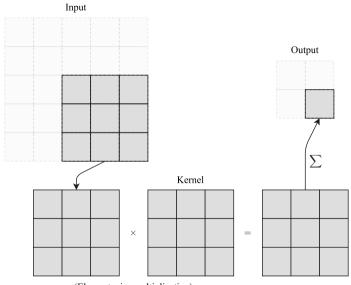
Convolutional layer - padding











Convolutional layer - summary

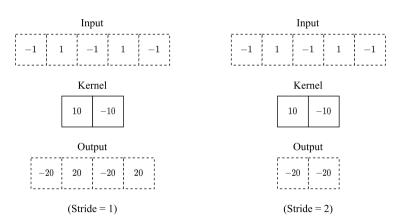
- Input size (of the layer and of every neuron): Channel \times Width \times Height
- Output size (of a neuron):

$$\underbrace{W_{out}}_{\text{width or height}} = \underbrace{\left[\underbrace{\frac{W_{in} + 2 \times padding - kernel_size}{stride}}_{\text{Number of possible kernel positions}} \right]_{\text{Starting position}}^{\text{Input total width}}$$

• Output size (of a layer): Number of neurons \times W_{out} \times H_{out}

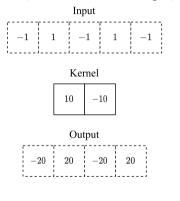
A high resolution/dimensionality may not be needed to recognize the content...

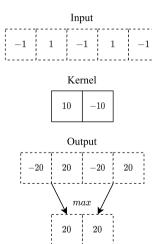
A high resolution/dimensionality may not be needed to recognize the content... ...but increasing the stride can be risky...

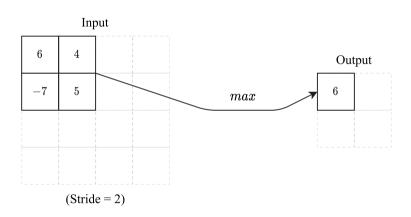


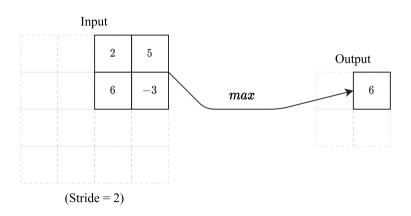
A high resolution/dimensionality may not be needed to recognize the content... ...but increasing the stride can be risky...

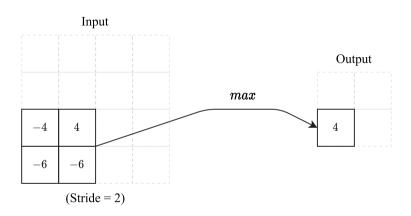
...so we tend to prefer max or average pooling

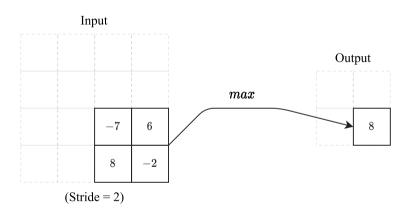








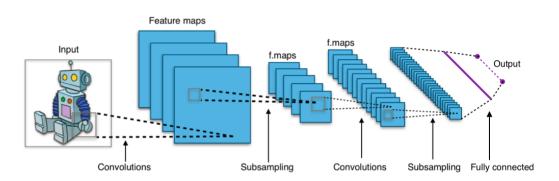




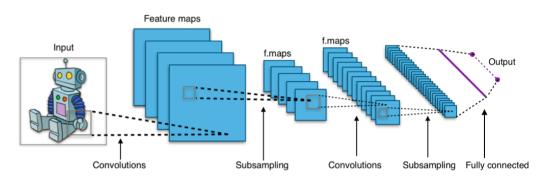
Adding pooling layers helps with:

- removing redundant information
- reducing the amount of computations and memory needed
- making the model more robust to small variations in the input

CNN - architecture and learning



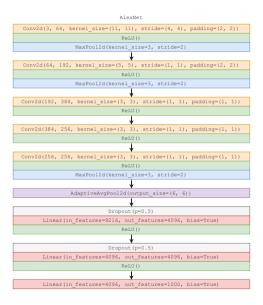
CNN - architecture and learning



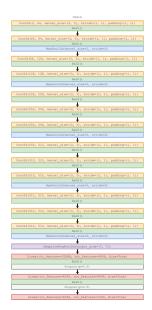
Each neuron does a weighted sum: we can apply SGD on the loss function!

- the weights (kernel) are shared between the neurons of a convolutional layer, so the gradient is aggredated (sum or average)
- for pooling layers, we either backpropagate where the data come from (for max pooling), or do as for any other weighted sum (for average pooling)

Convolutional Neural Network - AlexNet (2012)



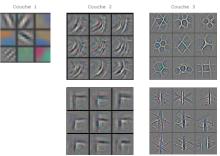
Convolutional Neural Network - VGG16 (2014)



CNN summary

Principles

- Use of convolution for translation invariance and weights sharing
- Pooling to reduce dimensionality
- A MLP at the end of the architecture (no more spatial structure)
- Architecture adaptable to 1D (audio), 3D (video), or graphs...



- Universal approximator + a huge amount of data/GPUs... only part of the story
- Hierarchical and automatic learning of features
- Local minima seems quite good [Choromanska et al., 2015]
- Deals better with data/tasks in practice (compared to shallow networks)
- Easy to incorporate inductive biases (e.g., convolution for images)

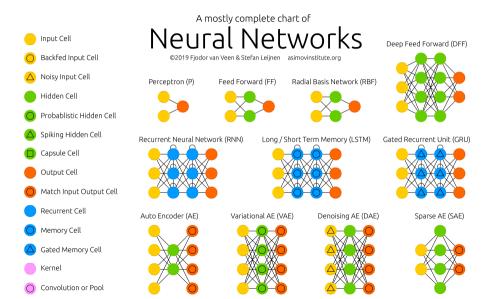
- Universal approximator + a huge amount of data/GPUs... only part of the story
- Hierarchical and automatic learning of features
- Local minima seems quite good [Choromanska et al., 2015]
- Deals better with data/tasks in practice (compared to shallow networks)
- Easy to incorporate inductive biases (e.g., convolution for images)

- Universal approximator + a huge amount of data/GPUs... only part of the story
- · Hierarchical and automatic learning of features
- Local minima seems quite good [Choromanska et al., 2015]
- Deals better with data/tasks in practice (compared to shallow networks)
- Easy to incorporate inductive biases (e.g., convolution for images)

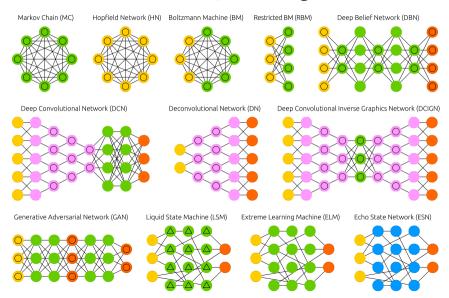
- Universal approximator + a huge amount of data/GPUs... only part of the story
- Hierarchical and automatic learning of features
- Local minima seems quite good [Choromanska et al., 2015]
- Deals better with data/tasks in practice (compared to shallow networks)
- Easy to incorporate inductive biases (e.g., convolution for images)

- Universal approximator + a huge amount of data/GPUs... only part of the story
- Hierarchical and automatic learning of features
- Local minima seems quite good [Choromanska et al., 2015]
- Deals better with data/tasks in practice (compared to shallow networks)
- Easy to incorporate inductive biases (e.g., convolution for images)

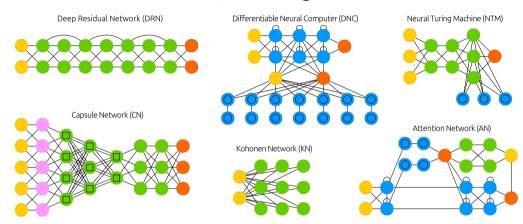
Deep learning zoo



Deep learning zoo

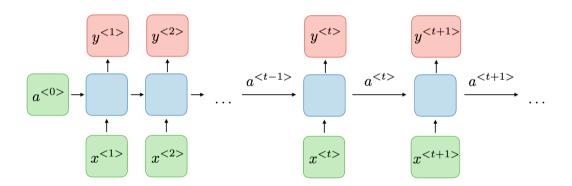


Deep learning zoo

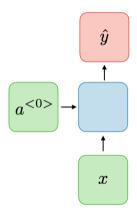


https://www.asimovinstitute.org/neural-network-zoo/

Recurrent neural networks (RNN)

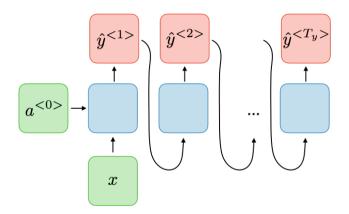


Diagrams by the Amidi brothers 37/46



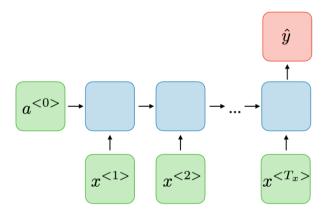
one to one

Diagrams by the Amidi brothers 38/46



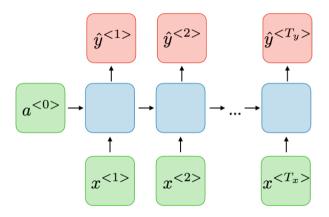
one to many

Diagrams by the Amidi brothers 38/46



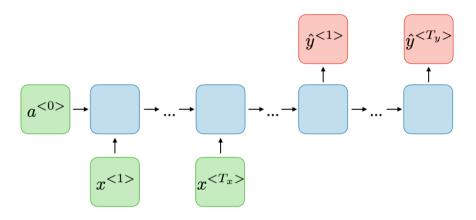
many to one

Diagrams by the Amidi brothers 38/46



many to many (aligned)

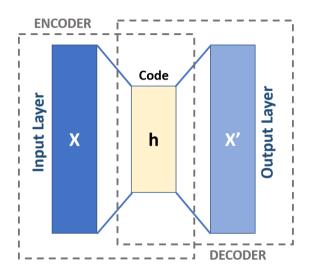
Diagrams by the Amidi brothers 38 / 46



many to many (split)

Diagrams by the Amidi brothers 38 / 46

Autoencoders (AE)

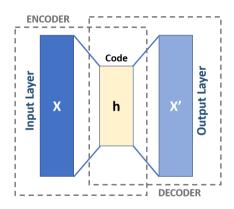


Unsupervised: $\mathcal{L}(x) = d(x, D(E(x)))$

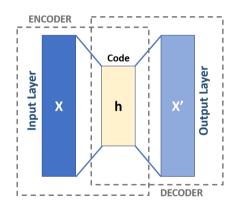
• Denoising:

$$\mathcal{L}(x) = d(x, D(E(x + \epsilon)))$$

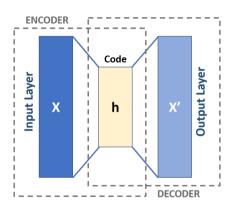
- Dimensionality reduction using the latent variable/code
- Fraud detection: reconstruction error increases on anomalous data points
- Image compression (convolutional autoencoders)



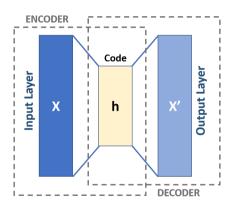
- Denoising: $\mathcal{L}(x) = d(x, D(E(x + \epsilon)))$
- Dimensionality reduction using the latent variable/code
- Fraud detection: reconstruction error increases on anomalous data points
- Image compression (convolutional autoencoders)



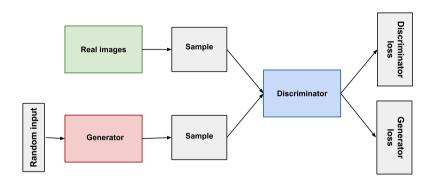
- Denoising: $\mathcal{L}(x) = d(x, D(E(x + \epsilon)))$
- Dimensionality reduction using the latent variable/code
- Fraud detection: reconstruction error increases on anomalous data points
- Image compression (convolutional autoencoders)



- Denoising: $\mathcal{L}(x) = d(x, D(E(x + \epsilon)))$
- Dimensionality reduction using the latent variable/code
- Fraud detection: reconstruction error increases on anomalous data points
- Image compression (convolutional autoencoders)



Generative adversarial networks (GAN)



https://thispersondoesnotexist.com/

- Data (pre) processing
- Choice of the model
- Training
- Getting the better performances

- Data (pre) processing
 - Balanced/representative data
 - Data augmentations: e.g., changing the color, zoom, or orientation for images
 - Normalizing data: $rac{x-ar{x}}{\sigma(x)}$
 - Use of mini batchs
 - Use of train/test/validation datasets
- · Choice of the model
- Training
- Getting the better performances

- Data (pre) processing
 - Balanced/representative data
 - Data augmentations: e.g., changing the color, zoom, or orientation for images
 - Normalizing data: $rac{x-ar{x}}{\sigma(x)}$
 - Use of mini batchs
 - Use of train/test/validation datasets
- · Choice of the model
- Training
- Getting the better performances

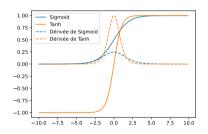
- Data (pre) processing
 - Balanced/representative data
 - Data augmentations: e.g., changing the color, zoom, or orientation for images
 - Normalizing data: $\frac{x-\bar{x}}{\sigma(x)}$
 - Use of mini batchs
 - Use of train/test/validation datasets
- Choice of the model.
- Training
- Getting the better performances

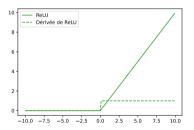
- Data (pre) processing
 - Balanced/representative data
 - Data augmentations: e.g., changing the color, zoom, or orientation for images
 - Normalizing data: $\frac{x-\bar{x}}{\sigma(x)}$
 - Use of mini batchs
 - Use of train/test/validation datasets
- · Choice of the model
- Training
- Getting the better performances

- Data (pre) processing
 - Balanced/representative data
 - Data augmentations: e.g., changing the color, zoom, or orientation for images
 - Normalizing data: $\frac{x-\bar{x}}{\sigma(x)}$
 - Use of mini batchs
 - Use of train/test/validation datasets
- Choice of the model.
- Training
- Getting the better performances

- Data (pre) processing
- Choice of the model
 - Type of architecture w.r.t. the data / problem
 - Choice of the activation function
- Training
- Getting the better performances

- Data (pre) processing
- Choice of the model
 - Type of architecture w.r.t. the data / problem
 - Choice of the activation function





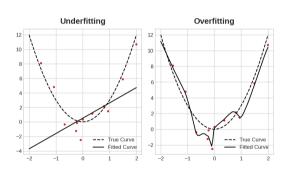
- Training
- Getting the better performances

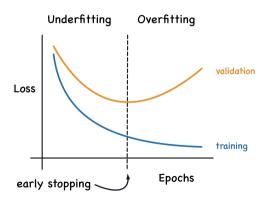
- Data (pre) processing
- · Choice of the model
- Training
 - Loss function:
 - regression: (Mean) squared error: $\frac{1}{2}\sum_{x,i}(t_i-y_i)^2$
 - classification: softmax + cross entropy: $\sum_{x} -\log \frac{e^{y_t}}{\sum_{i} e^{y_i}}$
 - Regularisation: $+||\mathbf{w}||$ in the loss function or *drop out* (some weights are randomly set to 0)
 - Choice of the optimizer: SGD, SGD + momentum, Adagrad, Adam
 - Overfitting, underfitting, early stopping
- Getting the better performances

- Data (pre) processing
- · Choice of the model
- Training
 - Loss function:
 - regression: (Mean) squared error: $\frac{1}{2}\sum_{x,i}(t_i-y_i)^2$
 - classification: softmax + cross entropy: $\sum_{x} -\log \frac{e^{y_t}}{\sum_{i} e^{y_i}}$
 - Regularisation: $+||\mathbf{w}||$ in the loss function or *drop out* (some weights are randomly set to 0)
 - Choice of the optimizer: SGD, SGD + momentum, Adagrad, Adam
 - Overfitting, underfitting, early stopping
- Getting the better performances

- Data (pre) processing
- · Choice of the model
- Training
 - Loss function:
 - regression: (Mean) squared error: $\frac{1}{2}\sum_{x,i}(t_i-y_i)^2$
 - classification: softmax + cross entropy: $\sum_{x} -\log \frac{e^{y_t}}{\sum_{i} e^{y_i}}$
 - Regularisation: $+||\mathbf{w}||$ in the loss function or *drop out* (some weights are randomly set to 0)
 - Choice of the optimizer: SGD, SGD + momentum, Adagrad, Adam
 - Overfitting, underfitting, early stopping
- Getting the better performances

Overfitting, underfitting, and early stopping





- Data (pre) processing
- · Choice of the model
- Training
 - Loss function:
 - regression: (Mean) squared error: $\frac{1}{2}\sum_{x,i}(t_i-y_i)^2$
 - classification: softmax + cross entropy: $\sum_{x} -\log \frac{e^{y_t}}{\sum_{i} e^{y_i}}$
 - Regularisation: $+||\mathbf{w}||$ in the loss function or *drop out* (some weights are randomly set to 0)
 - Choice of the optimizer: SGD, SGD + momentum, Adagrad, Adam
 - Overfitting, underfitting, early stopping
- Getting the better performances

- Data (pre) processing
- Choice of the model
- Training
- Getting the better performances
 - Hyperparameters: start with default values...
 - for the MLP, usually a big 1st layer, then decreasing size
 - for the CNN, usually the number of channels increases at each layer (to "compensate" the decreasing size of the feature maps)
 - ...then empirically find what works on the validation set (typically with a grid search)
 - Fine tuning: use of a ("general") pre trained model that is locally adapted to the data

- Data (pre) processing
- Choice of the model
- Training
- Getting the better performances
 - Hyperparameters: start with default values...
 - for the MLP, usually a big 1st layer, then decreasing size
 - for the CNN, usually the number of channels increases at each layer (to "compensate" the decreasing size of the feature maps)
 - ...then empirically find what works on the validation set (typically with a grid search)
 - Fine tuning: use of a ("general") pre trained model that is locally adapted to the data

- Data (pre) processing
- Choice of the model
- Training
- Getting the better performances
 - Hyperparameters: start with default values...
 - for the MLP, usually a big 1st layer, then decreasing size
 - for the CNN, usually the number of channels increases at each layer (to "compensate" the decreasing size of the feature maps)
 - ...then empirically find what works on the validation set (typically with a grid search)
 - Fine tuning: use of a ("general") pre trained model that is locally adapted to the data

Limitations - Over training?

data aug	dropout	weight decay	top-1 train	top-5 train	top-1 test	top-5 test						
ImageNet 1000 classes with the original labels												
yes	yes	yes	92.18	99.21	77.84	93.92						
yes	no	no	92.33	99.17	72.95	90.43						
no	no	yes	90.60	100.0	67.18 (72.57)	86.44 (91.31)						
no	no	no	99.53	100.0	59.80 (63.16)	80.38 (84.49)						
Alexne	t (Krizhevsky	et al., 2012)	-	-	-	83.6						
ImageNet 1000 classes with random labels												
no	yes	yes	91.18	97.95	0.09	0.49						
no	no	yes	87.81	96.15	0.12	0.50						
no	no	no	95.20	99.14	0.11	0.56						

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530.

Limitations - Bias

Classifier	${f Metric}$	All	\mathbf{F}	\mathbf{M}	Darker	Lighter	DF	$\mathbf{D}\mathbf{M}$	\mathbf{LF}	LM
	PPV(%)	93.7	89.3	97.4	87.1	99.3	79.2	94.0	98.3	100
MSFT	Error Rate(%)	6.3	10.7	2.6	12.9	0.7	20.8	6.0	1.7	0.0
MSFI	TPR (%)	93.7	96.5	91.7	87.1	99.3	92.1	83.7	100	98.7
	FPR(%)	6.3	8.3	3.5	12.9	0.7	16.3	7.9	1.3	0.0
	PPV(%)	90.0	78.7	99.3	83.5	95.3	65.5	99.3	94.0	99.2
Face++	Error Rate($\%$)	10.0	21.3	0.7	16.5	4.7	34.5	0.7	6.0	0.8
race++	TPR(%)	90.0	98.9	85.1	83.5	95.3	98.8	76.6	98.9	92.9
	FPR(%)	10.0	14.9	1.1	16.5	4.7	23.4	1.2	7.1	1.1
	PPV(%)	87.9	79.7	94.4	77.6	96.8	65.3	88.0	92.9	99.7
$_{\mathrm{IBM}}$	Error Rate(%)	12.1	20.3	5.6	22.4	3.2	34.7	12.0	7.1	0.3
IDM	TPR(%)	87.9	92.1	85.2	77.6	96.8	82.3	74.8	99.6	94.8
	FPR (%)	12.1	14.8	7.9	22.4	3.2	25.2	17.7	5.20	0.4

Buolamwini, Joy, and Timnit Gebru. "Gender shades: Intersectional accuracy disparities in commercial gender classification." Conference on Fairness, Accountability and Transparency. 2018

- Impact of digital technologies is estimated between 1.5 and 4% of global greenhouse gases emissions (\sim 37 billions of tons eqC02 in 2023)
- AI contribution (very) difficult to estimate, but clearly growing.
- For instance (estimations), GPT3 training required 1,287 MWh (\sim 500 tons eqCO2)...
- ...but ChatGPT inference needs 564 MWh (\sim 220 tons eqCO2) every day (i.e. \sim 80000 tons eqCO2 per year).

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). The climate impact of ICT: A review of estimates, trends and regulations. arXiv preprint arXiv:2102.02622.

- Impact of digital technologies is estimated between 1.5 and 4% of global greenhouse gases emissions (\sim 37 billions of tons eqC02 in 2023)
- AI contribution (very) difficult to estimate, but clearly growing.
- For instance (estimations), GPT3 training required 1,287 MWh (\sim 500 tons eqCO2)...
- ...but ChatGPT inference needs 564 MWh (\sim 220 tons eqCO2) every day (i.e. \sim 80000 tons eqCO2 per year).

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). The climate impact of ICT: A review of estimates, trends and regulations. arXiv preprint arXiv:2102.02622.

- Impact of digital technologies is estimated between 1.5 and 4% of global greenhouse gases emissions (\sim 37 billions of tons eqC02 in 2023)
- AI contribution (very) difficult to estimate, but clearly growing.
- For instance (estimations), GPT3 training required 1,287 MWh (\sim 500 tons eqCO2)...
- ...but ChatGPT inference needs 564 MWh (\sim 220 tons eqCO2) every day (i.e. \sim 80000 tons eqCO2 per year).

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). The climate impact of ICT: A review of estimates, trends and regulations. arXiv preprint arXiv:2102.02622.

Patel, D., & Ahmad, A. (2023). The Inference Cost Of Search Disruption-Large Language Model Cost Analysis. Verfügbar unter https://www.semianalysis.com/p/theinference-cost-of-search-disruption.

- Impact of digital technologies is estimated between 1.5 and 4% of global greenhouse gases emissions (\sim 37 billions of tons eqC02 in 2023)
- AI contribution (very) difficult to estimate, but clearly growing.
- For instance (estimations), GPT3 training required 1,287 MWh (\sim 500 tons eqCO2)...
- ...but ChatGPT inference needs 564 MWh (\sim 220 tons eqCO2) every day (i.e. \sim 80000 tons eqCO2 per year).

References

- Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss surfaces of multilayer networks. In Artificial intelligence and statistics, pages 192–204. PMLR, 2015.
- Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. *Neural computation*, 1(4):541–551, 1989.
- Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4): 115–133, 1943.
- Murray Rosenblatt. Some purely deterministic processes. Journal of Mathematics and Mechanics, pages 801-810, 1957.