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What you’ll learn

• Deep learning principles

• Perceptron, multilayer perceptron

• Convolutional neural networks

• Deep learning in practice

• Limitations of deep learning
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What is learning? What is our goal?

Formally, we want to learn a function f (·) that maps inputs to desired outputs.

Goals

• memorization

• generalization

• explainability, fairness,

robustness, efficiency...
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Types of learning

• supervised: y = f (x), with x ∈ X and y ∈ Y
– regression: Y is continuous, e.g., Rn

– classification: Y is discrete, e.g., Y = {dog, cat}
• unsupervised: f (x), with x ∈ X

– clustering

– dimensionality reduction

• reinforcement…

4 /46



Types of learning

• supervised: y = f (x), with x ∈ X and y ∈ Y
– regression: Y is continuous, e.g., Rn

– classification: Y is discrete, e.g., Y = {dog, cat}
• unsupervised: f (x), with x ∈ X

– clustering

– dimensionality reduction

• reinforcement…

4 /46



Types of learning

• supervised: y = f (x), with x ∈ X and y ∈ Y
– regression: Y is continuous, e.g., Rn

– classification: Y is discrete, e.g., Y = {dog, cat}
• unsupervised: f (x), with x ∈ X

– clustering

– dimensionality reduction

• reinforcement…

4 /46



The artificial neuron [McCulloch and Pitts, 1943]

• inputs/features xi

• weights wi

• sum of the products ∑
• activation function φ

• output!

ŷ = φ(∑n
i=1xiwi)
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The artificial neuron [McCulloch and Pitts, 1943]
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The perceptron algorithm [Rosenblatt, 1957]

Using x0 = 1 and w0 = −θ:

ŷ = Hθ(
n

∑
i=1

xiwi)

= H0(
n

∑
i=0

xiwi)

= H0(x>w)

with x =

x0
...

xn

 and w =

w0
...

wn


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The perceptron: learning

Instead of using hand-set values for weights, Rosenblatt proposes to learn them.

Learning rule: ∆wi = ηxi(y− ŷ)

→ Intuitively, if the prediction is larger than the target, we need to reduce the

weights, and vice versa.

Let’s learn the OR function by iterating on four learning examples:

x1 =

10
0

→ 0, x2 =

11
0

→ 1, x3 =

10
1

→ 1, x4 =

11
1

→ 1
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https://www.desmos.com/calculator/wtt3omtsay


The perceptron: properties

Properties

1. linear classifier, i.e., separates space with an hyperplan

2. weight vector is orthogonal to the hyperplan, bias controls the y-intercept

3. converges for infinitesimally small η if the training data is linearly separable
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From perceptron to SGD

Problems with the perceptron:

• can only perform binary classification

• does not converge when data is not linearly separable (or noisy)

• updates in an abrupt manner and does not use well classified samples

Stochastic gradient descent (SGD):

Goal: update weights to minimize the cost function J

∆w = −η∇J (w)

• updates in a smoother way than perceptron (uses all samples)

• converges even for non linearly separable data (for appropriately chosen η)

• needs a differentiable cost function!
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Gradient descents

Algorithm 1: Gradient descent

Data: Training dataset of N examples

Result: Optimized weights w
Initialize weights randomly;

while not converged do

Compute true gradient, ∇J(w) = 1
N ∑N

1 L(xi) // Expensive but convergence is
theoretically guaranteed

Update weights, w← w− η∇J(w);

end

return w;

• Batch GD: J is the average of a loss L over the entire dataset

• Online GD: J is the loss on a single training example

• Mini-batch GD: J is the average loss over a subset of the training dataset

Gradient descent algorithms are stochastic when the training examples are

selected randomly.
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Gradient descents

Algorithm 2: Online gradient descent

Data: Training dataset of N examples

Result: Optimized weights w
Initialize weights randomly;

while not converged do

Compute estimate gradient, ∇J(w) ' L(xi) // Faster, but noisier: one example

is not representative of the training data
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Gradient descents

Algorithm 3: Mini-batch gradient descent

Data: Training dataset of N examples

Result: Optimized weights w
Initialize weights randomly;

while not converged do

Compute estimate gradient, ∇J(w) ' 1
n ∑n<N

1 L(xi) // Often best balance in

practice

Update weights, w← w− η∇J(w);

end
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Gradient descents

Algorithm 4: Mini-batch gradient descent

Data: Training dataset of N examples

Result: Optimized weights w
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SGD example: house price prediction

• features x ∈ {surface area, number

of rooms, exposure, parking...}

• labels y ∈ R

→ need to change activation!

φ(x) = x is simple, differentiable,

and its codomain is R

• What cost function should we use?

let’s try the average error
1
n ∑x y− ŷ(x)
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SGD: mean error

∆w = −η∇J (w), and specifically:

∆wi = −η
∂

∂wi
J (w)

= −η
∂

∂wi

1
n ∑

x
y− ŷ(x)

= −η
1
n ∑

x

∂

∂wi
y− ŷ(x)

= −η
1
n ∑

x

∂

∂wi
y−∑

i
xiwi

= η
1
n ∑

x
xi

No dependence on the target! The weights will drift without ever converging.

−10 + 10 = 0 → loss should be non-negative!
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SGD: mean squared error (MSE)

MSE = 1
2n ∑x(y− ŷ(x))2

∆wi = −η
∂

∂wi
J (w)

= −η
∂

∂wi

1
2n ∑

x
(y− ŷ(x))2

=
−η

2n ∑
x

∂

∂wi
(y− ŷ(x))2

=
−η

2n ∑
x
−2xi(y− ŷ(x))

=
η

n ∑
x
(y− ŷ(x))xi

The choice of loss function is important!
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Beyond learning linear functions

We are learning weights for a perceptron:

a linear combination of inputs.

How can we learn non-linear functions?

Use multiple layers of neurons!

Our perceptron learns the linear best fit, but we can do better.
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Multi-layer perceptron (MLP)

neural network: a series of layers with weights and activations,

transforming an input into an output.

Can this learn non-linear function? Let’s put it to the test!
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https://playground.tensorflow.org/#activation=linear&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=3,3&seed=0.00164&showTestData=false&discretize=false&percTrainData=70&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Multi-layer perceptron (MLP)

We need to introduce non-linearities, e.g., using the sigmoid as the activation

functions in hidden layers.

σ(x) =
1

1 + e−x σ′(x) = (1−σ(x))σ(x)

0

0.5

1

−6 −4 −2 0 2 4 6
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Learning with a MLP

Two phases:

• forward propagation (inference)

input passes through the network to produce the output, used to compute the

loss

• backpropagation
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Learning with a MLP

Two phases:

• forward propagation (inference)

• backpropagation

gradients are propagated backward through the network, allowing us to

perform an SGD update
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Backpropagation: simple example

What is the influence of w(1)
1 on L(ŷ)?

How should I modify its value to decrease the loss?

∂L
∂w(1)

1

= ?
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Backpropagation: simple example

∂L
∂w(1)

1

=
∂L
∂ŷ︸︷︷︸

−2(y− ŷ)

· ∂ŷ
∂z(2)︸ ︷︷ ︸

1

· ∂z(2)

∂a(1)︸ ︷︷ ︸
w(2)

1

· ∂a(1)

∂z(1)︸ ︷︷ ︸
σ′(z(1))

· ∂z(1)

∂w(1)
1︸ ︷︷ ︸

x
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Backpropagation: simple example

Remembering SGD, ∆w = −η∇J (w)

Hence, ∆w(1)
1 = η2(y− ŷ)w(2)

1 σ(z(1))(1− σ(z(1)))x

We can reuse computations:

∆w(1)
0 = η2(y− ŷ)w(2)

1 σ(z(1))(1− σ(z(1)))x
∆w(2)

0 = η2(y− ŷ)w(2)
1 σ(z(1))(1− σ(z(1)))x
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Learning rate
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Finding the optimal weights

In practice, the loss landscape is very complex with billions of dimensions!
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MLP: summary

Multi-layer perceptrons are universal

approximators: they can approximate

any continuous function given that they

are wide/deep enough.

But convergence can be ineffective

(non-convex and high-dimensional

space, vanishing gradients...) and may

require some tricks in practice.

To play around with MLPs online: https://playground.tensorflow.org

22 / 46
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Convolutional Neural Networks (CNN) [LeCun et al., 1989]

How can we learn from images as inputs?
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Convolutional Neural Networks (CNN) [LeCun et al., 1989]

How can we learn from images as inputs?

(Bad) solution

We can use an MLP! However:

• a huge number of weights to learn (an image has at least 1000 dimensions)

• the problem of translation
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Convolutional Neural Networks (CNN) [LeCun et al., 1989]

How can we learn from images as inputs?

Good solution

Adapt the neurons and network to perform convolution.
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CNN: the convolution operation
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CNN: the convolution operation
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CNN: convolutional neuron
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CNN: convolutional layer
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Convolutional layer - padding

27 / 46



Convolutional layer - stride
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Convolutional layer - stride
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Convolutional layer - stride
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Convolutional layer - stride
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Convolutional layer - summary

• Input size (of the layer and of every neuron): Channel×Width×Height

• Output size (of a neuron):

Wout︸︷︷︸
width or height

=
⌊ Input total width︷ ︸︸ ︷

Win + 2× padding−kernel_size
stride︸ ︷︷ ︸

Number of possible kernel positions

⌋
+1︸︷︷︸

Starting position

• Output size (of a layer): Number of neurons×Wout × Hout

29 / 46



Pooling layer

A high resolution/dimensionality may not be needed to recognize the content...
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Pooling layer

A high resolution/dimensionality may not be needed to recognize the content...

...but increasing the stride can be risky...
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Pooling layer

A high resolution/dimensionality may not be needed to recognize the content...

...but increasing the stride can be risky...

...so we tend to prefer max or average pooling
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Pooling layer
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Pooling layer
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Pooling layer

Adding pooling layers helps with:

• removing redundant information

• reducing the amount of computations and memory needed

• making the model more robust to small variations in the input

30 /46



CNN - architecture and learning

Each neuron does a weighted sum: we can apply SGD on the loss function!

• the weights (kernel) are shared between the neurons of a convolutional layer, so the

gradient is aggredated (sum or average)

• for pooling layers, we either backpropagate where the data come from (for max

pooling), or do as for any other weighted sum (for average pooling)
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Convolutional Neural Network - AlexNet (2012)

Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))

ReLU()

MaxPool2d(kernel_size=3, stride=2)

Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

ReLU()

MaxPool2d(kernel_size=3, stride=2)

Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=3, stride=2)

AdaptiveAvgPool2d(output_size=(6, 6))

Dropout(p=0.5)

Linear(in_features=9216, out_features=4096, bias=True)

ReLU()

Dropout(p=0.5)

Linear(in_features=4096, out_features=4096, bias=True)

ReLU()

Linear(in_features=4096, out_features=1000, bias=True)

AlexNet
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Convolutional Neural Network - VGG16 (2014)

Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU()

MaxPool2d(kernel_size=2, stride=2)

AdaptiveAvgPool2d(output_size=(7, 7))

Dropout(p=0.5)

Linear(in_features=25088, out_features=4096, bias=True)

ReLU()

Dropout(p=0.5)

Linear(in_features=4096, out_features=4096, bias=True)

ReLU()

Linear(in_features=4096, out_features=1000, bias=True)

VGG16
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CNN summary

Principles

• Use of convolution for translation invariance and weights sharing

• Pooling to reduce dimensionality

• A MLP at the end of the architecture (no more spatial structure)

• Architecture adaptable to 1D (audio), 3D (video), or graphs...

Couche 1 Couche 2
 Couche 3
 Couche 4
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Deep learning summary

Why does it work?

• Universal approximator + a huge amount of data/GPUs... only part of the story

• Hierarchical and automatic learning of features

• Local minima seems quite good [Choromanska et al., 2015]

• Deals better with data/tasks in practice (compared to shallow networks)

• Easy to incorporate inductive biases (e.g., convolution for images)
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Deep learning zoo

https://www.asimovinstitute.org/neural-network-zoo/
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Recurrent neural networks (RNN)
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Recurrent neural networks (RNN) - applications

one to one
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Recurrent neural networks (RNN) - applications

one to many
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Recurrent neural networks (RNN) - applications

many to one
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Recurrent neural networks (RNN) - applications

many to many (aligned)
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Recurrent neural networks (RNN) - applications

many to many (split)
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Autoencoders (AE)

Unsupervised: L(x) = d(x, D(E(x)))
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Autoencoders (AE) - applications

• Denoising:

L(x) = d(x, D(E(x + ε)))

• Dimensionality reduction using the

latent variable/code

• Fraud detection: reconstruction error

increases on anomalous data points

• Image compression (convolutional

autoencoders)
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Generative adversarial networks (GAN)

https://thispersondoesnotexist.com/
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Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

• Getting the better performances
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– Choice of the activation function
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Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

– Loss function:

– regression: (Mean) squared error:
1
2 ∑

x,i
(ti − yi)

2

– classification: softmax + cross entropy: ∑
x
− log

eyt

∑i eyi

– Regularisation: +||w|| in the loss function or drop out (some weights are

randomly set to 0)

– Choice of the optimizer: SGD, SGD + momentum, Adagrad, Adam

– Overfitting, underfitting, early stopping

• Getting the better performances
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Deep learning in practice

Overfitting, underfitting, and early stopping
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Deep learning in practice

• Data (pre) processing

• Choice of the model

• Training

• Getting the better performances

– Hyperparameters: start with default values...

– for the MLP, usually a big 1st layer, then decreasing size

– for the CNN, usually the number of channels increases at each layer

(to ”compensate” the decreasing size of the feature maps)

– ...then empirically find what works on the validation set (typically with a

grid search)

– Fine tuning: use of a (”general”) pre trained model that is locally adapted

to the data
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Limitations - Over training?

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2016). Understanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530.
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Limitations - Bias

Buolamwini, Joy, and Timnit Gebru. ”Gender shades: Intersectional accuracy disparities in commercial gender classification.” Conference on Fairness,

Accountability and Transparency. 2018
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Limitations - Environmental impact

• Impact of digital technologies is estimated between 1.5 and 4% of global

greenhouse gases emissions (∼37 billions of tons eqC02 in 2023)

• AI contribution (very) difficult to estimate, but clearly growing.

• For instance (estimations), GPT3 training required 1,287 MWh (∼500 tons

eqCO2)...

• ...but ChatGPT inference needs 564 MWh (∼220 tons eqCO2) every day (i.e.

∼80000 tons eqCO2 per year).

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G., & Friday, A. (2021). The climate impact of ICT: A review of estimates, trends and

regulations. arXiv preprint arXiv:2102.02622.

Patel, D., & Ahmad, A. (2023). The Inference Cost Of Search Disruption–Large Language Model Cost Analysis. Verfügbar unter https://www.

semianalysis. com/p/theinference-cost-of-search-disruption.
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